Carbonium Ion Rearrangement in the Crystalline State: lsokinetic 'Phase' Point

Gennady I. Borodkin, Sándor M. Nagy, Victor I. Mamatyuk, Makhmut M. Shakirov, and **Vyacheslav G. Shubin"**

Institute of Organic Chemistry, Siberian Division of the Academy of Sciences, Novosibirsk 630090, U.S.S. R.

An isokinetic point has been found for the degenerate rearrangement of heptamethylbenzenium tetrachloroaluminate on passing from the solution to the crystalline state.

theoretical and synthetic points of view. Although consider- of 1,2-shifts in long-lived carbocations do not change signifiable advances have been made in the studies of stereo-
cantly on passing from the liquid to the 'frozen' solidified
chemistry, structure-reactivity relationships, and medium
solution³ (cf. ref. 4), but change greatly on chemistry, structure-reactivity relationships, and medium solution³ (*cf.* ref. 4), but change greatly on passing to the effects in such reactions proceeding in the liquid phase,^{1,2} the crystalline state.⁵ It is ver effects in such reactions proceeding in the liquid phase,^{1,2} the crystalline state.⁵ It is very interesting that the rigid ionic solid-state effects are not clear so far. $\frac{1}{2}$ environment in the crystal should ex

In the course of our studies of phase-state effects on over the rearrangements.

Carbonium ion rearrangements are interesting both from carbonium ion rearrangements, we have found that the rates environment in the crystal should exert a strong influence

Figure 1. I3C C.p.m.a.s. n.m.r. spectrum (CXP-300, Bruker) of heptamethylbenzenium tetrachloroaluminate at 20 **"C.** The carbon shift of the C(1) atom is taken to be δ 56.6 p.p.m. from Me₄Si (*cf.* ref. 2).

 0.8

Scheme 1. $a, R = Me$; $b, R = CHD₂$.

Figure 2. ²H N.m.r. relative intensities (S_1/S) of methyl signals *vs.* the reaction time (t) for the 1,2-methyl shift at 0° C. The solid curves represent the theoretical relationships, the points represent the experimental data ($\bigcirc S_{oem}/S$, $\bigcirc S_{ortho}/S$, $\bigcirc S_{m\ell a}/S$, $\bigcirc S_{para}/S$; $S = S_{oem} + S_{ortho} + S_{meta} + S_{para}$).

It is reasonable to expect the ion **(1)** in the crystalline state to undergo six-fold degenerate rearrangement by a series of 1,2-shifts of the methyl groups attached to the cyclohexadi-

Figure 3. Plots of log k against $1/T$ for the degenerate 1,2-methyl shift in heptamethylbenzenium tetrachloroaluminate; crystalline state (A) , solution in $CH₂Cl₂ (B)$.

enyl ring relative to one of the two geminal methyl groups *(cf.* refs. *2, 5,* and **9).** Indeed, when the salt of the ion **(lb)** remains in the crystalline state at 0° C, redistribution of the intensities of signals in ¹H and ²H n.m.r. spectra is observed.[†] The dynamics of redistribution is in good agreement with that calculated for the intramolecular mechanism of the 1,2 shift (Scheme 1 and Figure 2), with some inequivalence of

t The salt was dissolved in CH₂Cl₂ at -80 °C and a ¹H or ²H n.m.r. spectrum of the solution was recorded.

the two geminal methyl groups⁸ and of the $C(2)$ and $C(6)$ atoms,⁴ and isotopic effects being neglected.

The rate constants for the 1,2-methyl shift were obtained at temperatures ranging from -78 to 0 $^{\circ}$ C. Least-squares treatment of the data gave the following values for the Arrhenius parameters: $E_a = 44.0 \pm 0.8$ kJ mol⁻¹, log $A = 4.8 \pm 0.2$. These values are much lower than those obtained from the solution of heptamethylbenzenium tetrachloroaluminate in CH_2Cl_2 , *i.e.*, $E_3 = 69.2 \pm 0.6$ kJ mol⁻¹, log $A = 11.5 \pm 0.1$. **A** striking feature of the respective plots shown in Figure **3** is the presence of a isokinetic 'phase' point (at -77 °C). A decrease in the activation energy for the 1,2-methyl shift in the crystalline state may result from electrostatic interaction between the partial positive charge on the 'migrating' (actually fixed) methyl group and the neighbouring $AICl₄$ anions in the transition state. A decreased activation entropy (at $0^{\circ}C$, $\Delta S^{\dagger} = -160.6$ *vs.* $\Delta S^{\dagger} = -32.4$ J K⁻¹ mol⁻¹ for solution) may be due to the much more limited atomic motions in the transition state of the rearrangement in a crystalline lattice.

We thank Dr. Yu. V. Gatilov for helpful discussions.

Received, 8th August 1983; Corn. I081

References

- M. Saunders, J. Chandrasekhar, and P. von R. Schleyer, in 'Rearrangements in Ground and Excited States,' vol. **1,** ed. P. de Mayo, Academic Press, New York, **1980,** p. **1.**
- **V.** A. Koptyug, 'Arenonium Ions. Structure and Reactivity,' Nauka, Novosibirsk, **1983.**
- G. **I.** Borodkin, Ye. B. Panova, and V. G. Shubin, Abstracts of Papers for the All-Union Conference on Low Temperature Chemistry, Moscow State University Press, Moscow, **1979, p. 68.**
- J. **R.** Lyerla, C. **S.** Yannoni, and *C.* **A.** Fyfe, *Acc. Chem. Res.,* **1982, 15, 208.**
- G. I. Borodkin, **S.** M. Nagy, and V. **G.** Shubin, *Izv. Akad. Nauk SSSR, Ser. Khim.,* **1982, 2639.**
- W. von E. Doering, M. Saunders, H. G. Boyton, H. **W.** Earhart, E. F. Wadley, W. R. Edwards, and G. Laber, *Tetrahedron,* **1958, 4, 178.**
- N. **M.** Alpatova, V. V. Gavrilenko, Yu. **M.** Kessler, 0. R. Osipov, and D. N. Maslin, 'Complexes of Hydride and Halide Metalloorganic Compounds of Aluminium,' Nauka, Moscow, **1970, p. 98.**
- N. C. Baenziger and A. D. Nelson, *J. Am. Chem. Soc.,* **1968, 90, 6602.**
- A. J. Campbell, C. E. Cottrell, **C. A.** Fyfe, and K. R. Jeffrey, *Inorg. Chem.,* **1976, 15, 1326.**